Integrability and Fusion Algebra for Quantum Mappings

نویسندگان

  • F. W. Nijhoff
  • H. W. Capel
چکیده

We apply the fusion procedure to a quantum Yang-Baxter algebra associated with time-discrete integrable systems, notably integrable quantum mappings. We present a general construction of higher-order quantum invariants for these systems. As an important class of examples, we present the Yang-Baxter structure of the Gel’fand-Dikii mapping hierarchy, that we have introduced in previous papers, together with the corresponding explicit commuting family of quantum invariants. 1† E-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of AdS/CFT Integrability, Chapter VI.2: Yangian Algebra

We review the study of Hopf algebras, classical and quantum R-matrices, infinite-dimensional Yangian symmetries and their representations in the context of integrability for the N = 4 vs AdS5×S correspondence. Mathematics Subject Classification (2010): 81T60, 81T30, 81U15, 16T05, 17B65

متن کامل

Quantum Symmetries, Operator Algebra and Quantum Groupoid Representations: Paracrystalline Systems, Topological Order, Supersymmetry and Global Symmetry Breaking

Novel approaches to extended quantum symmetry, paracrystals, quasicrystals, noncrystalline solids, topological order, supersymmetry and spontaneous, global symmetry breaking are outlined in terms of quantum groupoid, quantum double groupoids and dual, quantum algebroid structures. Physical applications of such quantum groupoid and quantum algebroid representations to quasicrystalline structures...

متن کامل

Integrability of Schwinger-Dyson Equations in 2D Quantum Gravity and c < 1 Non-critical String Field Theory

We investigate the integrability of the Schwinger-Dyson equations in c = 1 − 6 m(m+1) string field theory which were proposed by Ikehara et al as the continuum limit of the Schwinger-Dyson equations of the matrix chain model. We show the continuum Schwinger-Dyson equations generate a closed algebra. This algebra contains Virasoro algebra but does not coincide with W∞ algebra. We include in the ...

متن کامل

On the Exact Quantum Integrability of the Membrane

The exact quantum integrability problem of the membrane is investigated. It is found that the spherical membrane moving in flat target spacetime backgrounds is an exact quantum integrable system for a particular class of solutions of the light-cone gauge equations of motion : a dimensionally-reduced SU(∞) Yang-Mills theory to one temporal dimension . Crucial ingredients are the exact integrabil...

متن کامل

Hidden symmetry of the quantum Calogero-Moser system

Hidden symmetry of the quantum Calogero-Moser system with the inverse-square potential is explicitly demonstrated in algebraic sense. We find the underlying algebra explaining the super-integrability phenomenon for this system. Applications to related multi-variable Bessel functions are also discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992